As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
translated by 谷歌翻译
Recent development of deep neural networks (DNNs) for tabular learning has largely benefited from the capability of DNNs for automatic feature interaction. However, the heterogeneity nature of tabular features makes such features relatively independent, and developing effective methods to promote tabular feature interaction still remains an open problem. In this paper, we propose a novel Graph Estimator, which automatically estimates the relations among tabular features and builds graphs by assigning edges between related features. Such relation graphs organize independent tabular features into a kind of graph data such that interaction of nodes (tabular features) can be conducted in an orderly fashion. Based on our proposed Graph Estimator, we present a bespoke Transformer network tailored for tabular learning, called T2G-Former, which processes tabular data by performing tabular feature interaction guided by the relation graphs. A specific Cross-level Readout collects salient features predicted by the layers in T2G-Former across different levels, and attains global semantics for final prediction. Comprehensive experiments show that our T2G-Former achieves superior performance among DNNs and is competitive with non-deep Gradient Boosted Decision Tree models.
translated by 谷歌翻译
Since the recent success of Vision Transformers (ViTs), explorations toward transformer-style architectures have triggered the resurgence of modern ConvNets. In this work, we explore the representation ability of DNNs through the lens of interaction complexities. We empirically show that interaction complexity is an overlooked but essential indicator for visual recognition. Accordingly, a new family of efficient ConvNets, named MogaNet, is presented to pursue informative context mining in pure ConvNet-based models, with preferable complexity-performance trade-offs. In MogaNet, interactions across multiple complexities are facilitated and contextualized by leveraging two specially designed aggregation blocks in both spatial and channel interaction spaces. Extensive studies are conducted on ImageNet classification, COCO object detection, and ADE20K semantic segmentation tasks. The results demonstrate that our MogaNet establishes new state-of-the-art over other popular methods in mainstream scenarios and all model scales. Typically, the lightweight MogaNet-T achieves 80.0\% top-1 accuracy with only 1.44G FLOPs using a refined training setup on ImageNet-1K, surpassing ParC-Net-S by 1.4\% accuracy but saving 59\% (2.04G) FLOPs.
translated by 谷歌翻译
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when the KG embeddings are learned, has become a critical challenge. Subgraph reasoning with message passing is a promising and popular solution. Some recent methods have achieved good performance, but they (i) usually can only predict triples involving unseen entities alone, failing to address more realistic fully inductive situations with both unseen entities and unseen relations, and (ii) often conduct message passing over the entities with the relation patterns not fully utilized. In this study, we propose a new method named RMPI which uses a novel Relational Message Passing network for fully Inductive KGC. It passes messages directly between relations to make full use of the relation patterns for subgraph reasoning with new techniques on graph transformation, graph pruning, relation-aware neighborhood attention, addressing empty subgraphs, etc., and can utilize the relation semantics defined in the ontological schema of KG. Extensive evaluation on multiple benchmarks has shown the effectiveness of techniques involved in RMPI and its better performance compared with the existing methods that support fully inductive KGC. RMPI is also comparable to the state-of-the-art partially inductive KGC methods with very promising results achieved. Our codes and data are available at https://github.com/zjukg/RMPI.
translated by 谷歌翻译
光学计算是一种新兴技术,用于下一代高效人工智能(AI),其速度和效率超高。电磁场模拟对于光子设备和电路的设计,优化和验证至关重要。但是,昂贵的数值模拟显着阻碍了光子电路设计循环中的可扩展性和转环。最近,已经提出了物理信息的神经网络来预测具有预定义参数的部分微分方程(PDE)的单个实例的光场解。它们复杂的PDE公式和缺乏有效的参数化机制限制了其在实际模拟方案中的灵活性和概括。在这项工作中,首次提出了一个被称为Neurolight的物理敏捷神经操作员框架,以学习一个频率域的麦克斯韦PDE家族,以进行超快速的参数光子设备模拟。我们通过几种新技术来平衡神经照明的效率和概括。具体而言,我们将不同的设备离散到统一域中,代表具有紧凑型波的参数PDE,并通过掩盖的源建模编码入射光。我们使用参数效率高的跨形神经块设计模型,并采用基于叠加的增强来进行数据效率学习。通过这些协同方法,神经亮像可以概括为大量的看不见的模拟设置,比数值求解器显示了2个磁性的模拟速度,并且比先前的神经网络模型优于降低54%的预测误差,而降低了约44%的参数。 。我们的代码可在https://github.com/jeremiemelo/neurolight上找到。
translated by 谷歌翻译
模拟和混合信号(AMS)电路设计仍然依赖于人类设计专业知识。机器学习一直通过用人工智能代替人类的体验来协助电路设计自动化。本文介绍了标签,这是一种从利用文本,自我注意力和图形的布局中学习电路表示的新范式。嵌入网络模型在无手动标签的情况下学习空间信息。我们向AMS电路学习介绍文本嵌入和自我注意的机制。实验结果表明,具有工业罚款技术基准的实例之间的布局距离的能力。通过在案例研究中显示有限数据的其他三个学习任务的转移性,可以验证电路表示的有效性:布局匹配预测,线长度估计和净寄生电容预测。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
深度学习表现出巨大的生成任务潜力。生成模型是可以根据某些隐含参数随机生成观测值的模型类。最近,扩散模型由于其发电能力而成为一类生成模型。如今,已经取得了巨大的成就。除了计算机视觉,语音产生,生物信息学和自然语言处理外,还需要在该领域探索更多应用。但是,扩散模型具有缓慢生成过程的自然缺点,从而导致许多增强的作品。该调查总结了扩散模型的领域。我们首先说明了两项具有里程碑意义的作品的主要问题-DDPM和DSM。然后,我们提供各种高级技术,以加快扩散模型 - 训练时间表,无训练采样,混合模型以及得分和扩散统一。关于现有模型,我们还根据特定的NFE提供了FID得分的基准和NLL。此外,引入了带有扩散模型的应用程序,包括计算机视觉,序列建模,音频和科学AI。最后,该领域以及局限性和进一步的方向都进行了摘要。
translated by 谷歌翻译
近年来,自动对色素,非色素和脱发的非胸膜皮肤病变的分类引起了很多关注。但是,皮肤纹理,病变形状,脱位对比度,照明条件等的成像变化。阻碍了鲁棒的特征提取,从而影响分类精度。在本文中,我们提出了一个新的深神经网络,该网络利用输入数据进行鲁棒特征提取。具体而言,我们分析了卷积网络的行为(视野),以找到深度监督的位置,以改善特征提取。为了实现这一目标,首先,我们执行激活映射以生成对象掩码,突出显示对分类输出生成最重要的输入区域。然后,选择层的有效接收场的网络层与对象掩模中的近似对象形状相匹配,以作为我们进行深度监督的焦点。利用三个黑色素瘤检测数据集和两个白癜风检测数据集上的不同类型的卷积特征提取器和分类器,我们验证了新方法的有效性。
translated by 谷歌翻译
基于多模式方面的情感分类(MABSC)是一项新兴的分类任务,旨在将给定目标的情感分类,例如具有不同模式的数据中提到的实体。在带有文本和图像的典型多模式数据中,以前的方法不能充分利用图像的细颗粒语义,尤其是与文本的语义结合在一起,并且不完全考虑对细粒图像之间的关系进行建模信息和目标,这导致图像的使用不足和不足以识别细粒度的方面和意见。为了应对这些局限性,我们提出了一个新的框架SEQCSG,包括一种构建顺序跨模式语义图和编码器模型的方法。具体而言,我们从原始图像,图像标题和场景图中提取细粒度的信息,并将它们视为跨模式语义图的元素以及文本的令牌。跨模式语义图表示为具有多模式可见矩阵的序列,指示元素之间的关系。为了有效地利用跨模式语义图,我们建议使用目标提示模板的编码器解码器方法。实验结果表明,我们的方法优于现有方法,并在两个标准数据集MABSC上实现了最新方法。进一步的分析证明了每个组件的有效性,我们的模型可以隐含地学习图像的目标和细粒度信息之间的相关性。
translated by 谷歌翻译